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AN ANALYTICAL ESTIMATION OF THE RMS TUNE SHIFTS
DUE TO MAGNET IMPERFECTIONS

The tolerances of a storage ring to its magnet imperfections largely
depend upon the magnitude of the resulting tune shifts. A Targe tune shift
would imply the potential danger of resonances and, hence, poor tolerances.
When the errors are in field gradients or in random sextupole displacement,
the calculations of the RMS tune shifts are straight forward. On the
contrary, when we consider the tune shifts due to errors in quadrupole
placement or in dipole fields, the calculations are often confusing and
mishandled. This note provides a concise formula for the RMS tune shifts due
to either quadrupole displacement or dipole field errors. For simplicity, we
will Timit our discussions to the effects of quadrupole displacement.

However, all our results should be applicable to the case where errors are in
dipole fields.

The quadrupole displacement produces closed orbit (c.o0.) distortions
everywhere in a storage ring. In particular, the horizontal ¢.o. distortions
at the sextupoles give rise to a tune shift. The calculations of these
effects are well-known. For instance, the horizontal c.o. distortion at the

jth sextupole is

85 = zsimmy b/ Bxi Kikt cosling =g - gy (1)

in which aA; is the displacement of the jth quadrupole and K; = (B'/Bp);. The

vertical c.o. distortion has a similar form. The horizontal and vertical tune



shifts resulting from the sextupole displacement are
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respectively, with S;: = (B"¢/Bp)s. These equations can be rewritten in the
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compact forms
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When a;'s are totally random, one can define a (average)
magnification factor, A., of the c.o distortions at sextupoles.
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in which ng is the total number of sextupoles. Similarly, in case ij's are
totally random (Warning! This is not the case if ij's are ¢.o0. distortions),
the magnification factors of the tune shifts will be
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Now, we consider the tune shifts due to quadrupole displacement.

From Eqs. (4), (5) and (6), we get
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and, similarly,
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in which
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The parameter cy4 (Cyi) has a nice simple physical interpretation: it is the
horizontal {(vertical) tune shift resulting from a unit displacement of the jth
quadrupole. One can easily do statistics in view of Egs. (13) and (14) to get
the RMS tune shifts which are due to the random quadrupole displacement with

an RMS value <aA>.
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<Av > = (%f cyfzjl/z . <A (18)

One may then define the magnification factors
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The values of the three different types of magnification factors
discussed above have been calculated for the storage ring of the 7-GeV APS and

are listed in Table 1. Note that

3 << AC s A

q s’

where Aq (Ag) stands for either Aqx (Agy) or A (AL).
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Table 1
Magnification factors of the APS ring

Horizontal, x Vertical, vy

Ac, for c.o distortion at sext.

due to random quad. displacement 51 (not in use in this note)
Ag, tune shift due to random

sext. displacement 40 66
Aq, tune shift due to random

quad. displacement 230 120
Discussions:
1. A quite common mistake in calculating Aq is to take it simply as the

product of A. and A;. This is wrong and often leads to a large overesti-
mation. This can be seen in the following argument. From Eq. (5), one

has
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In order to define Agy, AXj and AXj have to be statistically independent

to each other (i.e., uncorrelated). If this is the case, one can then

conclude that

which leads to the definition in Eq. (11) for Ag,. When, on the other

j and AXj are the c.o. distortions at the jth and the j'th

sextupoles, they are not independent to. each other. Rather, each one is

hand, Ax



deri?ed from Eq. (4). Therefore, in order to do statistics, one has to go
back to Eq. (4), replacing AX 5 and AX 5 in Eq. (22) by their expressions

Eg. {4) in terms of a;. One can then invoke the random nature o
make statistical prediction for the RMS value of Av. This is precisely

what we did in the derivations of the formula in Egs. (17) and (18) above.

There are some tricks in doing the double summation Z (in Eqs. (15) and
(16)) and Z (in Egs. (17) and (18)). To compute J, gne has to sum over
the whole ;ing, not just a period. In other wordi, Z(over the ring) is
not egual to Z(over a period) muitiplied by the numbgr of periods. This
is because thgt for a fixed i, the cosine function in Eg. (7) is not
periodic in j. To compute Z, on the other hand, one only needs to sum
over a period and, then, to]multiply the sum by the square root of the

number of periods of the ring to get A This {s obvious in view of the

q°
physical meaning of cy; (cyi): the tune shift caused by (a unit
displacement of) the i th quadrupole in one period should be the same as

that by the jth quadrupole in another period.

Several programs run Monte Carlo simulations to get the RMS tune shifts
fér a given RMS value of quadrupcle displacement. Unfortunately,
sometimes different programs give quite different results. For example,
RACETRACK, MAD, PETROS and PATRIS have been employed to determine the
tolerances of the APS ring. For a 104 pms quadrupole placement error,
the results are listed in Table 2. The RMS tune shifts obtained by the
first three programs above are fairly close to each other, whereas PATRIS
gives the results which are bigger than those by an order of magnitude.

Meanwhile, from the values of Aq listed in Table 1, our theoretical



predictions for the RMS tune shifts are also shown in Table 2, which
asserts that the results from PATRIS are unlikely. On the other hand,
these programs give a finite average tune shift Av in addition to an RMS
<Av> {the values of AV are quite different from one program to the other),
while Eqs. (13) and (14) (which are based on the first-order perturbation
theory) would predict a zero value for Av when A;'s are random. This

discrepancy remains to be resolved.

As we have pointed out, all our results above are applicable to the case
where the tune shifts are due to dipole field errors instead of quadrupole
displacement. 1In this case, we replace kjg545 in (1) by (ABQ/BZ)i, the

field error of the ith dipole.



Tabie 2

Tune shifts of the APS ring for 10-% rMS quadrupole displacement

No. runs Horizontal Vertical Horizontal  Vertical
Formula (13) & (14) () 0 0 0.023 0.012
RACETRACK 10 -0.032 0.016 0.043 0.018
MAD 4 -0.058 0.009 0.019 0.015
PETROS 10 -(,007 0.017 0.018 0.013
PATRIS 21 0.214 0.225 0.278 0.203

Notes: (1) Data of RACETRACK and MAD are obtained by Kramer, that of PETROS

by Jdin, and that of PATRIS by Chou.





